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Abstract 

The non-dimensional approach to aerodynamics of trans-atmospheric flight is 
discussed, which explicitly takes into account the vertical span of the atmosphere as well 
as atmospheric mass load (atmospheric pressure) at the current flight level. As an 
example, a simple analytic model of the dynamics of trans-atmospheric flight is 
considered for both powered boost and non-powered glide of a trans-atmospheric vehicle, 
and the applicability to more general, numerical models of atmospheric flight is 
discussed. 

1. Introduction 

The future reusable trans-atmospheric vehicles (TAVs) will, very likely, use 
aerodynamic lift (aero-assist) on their way to space and back to Earth. it is understood 
intuitively that the cumulative effect of aerodynamic forces upon the vehicle during its 
ascent and descent depends on the vertical extent of the atmosphere and its mass, or 
rather the atmospheric pressure, which is a measure of mass of atmospheric column over 
a unit area. On the other hand, it is also well known that the relative effect of 
atmospheric forces increases with the decrease of size of the launch vehicle. This is why 
the smaller rockets, like Pegasus, need to be aircraft-launched from altitudes where most 
of atmospheric mass is below the launch point. This same principle applies to future 
aero-assisted launch vehicles. Hence, one might speculate that there should be some 
explicit physical interdependencies involving the mass and extent of the atmosphere on 
the one hand, and mass and size of the vehicle on the other that could be useful for initial 
sizing of TAVs and for related trade studies. 

In this paper we present a non-dimensional approach that offers a method of obtaining 
analytic insight into some of key trades and interdependencies relevant to performance of 
a TAV. In addition to well-known non-dimensional parameters, such as lift-to-drag and 
thrust-to-weight ratios, we identify two additional relevant non-dimensional parameters, 
which together make it possible to reformulate the general equations of motion of 
atmospheric flight vehicle in a non-dimensional form. We demonstrate the application of 
this non-dimensional approach using a simple analytic two-dimensional (2D) model of 
aero-assisted trans-atmospheric flight and compare the outcome with classic results of 
Eugen Sanger [ 11 obtained using a conventional approach. The use of just four non- 
dimensional combinations of dimensional parameters describing the vehicle and 
atmosphere substantially reduces the dimension of trade space and has a potential to 
make the process of initial sizing of the TAVs more transparent and straightforward. 
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2. Vertical extent and mass of the atmosphere 

It is well known that the density of the atmosphere decays exponentially with height 
so that the drop of atmospheric pressure p between two levels at altitudes hl and h2 in the 
atmosphere is given by: 

where H is the atmospheric scale height. The value of H is controlled by atmospheric 
temperature T and gravity g, and also depends on the gas constant R specific for given 
atmospheric composition: 

RT 

g 
H = -  

Another atmospheric parameter, which is relevant here, is the total mass of the 
atmospheric column per unit area: 

P mA =-  
g 

(3) 

An alternate expression of mA can be obtained through atmospheric density p using the 
equation of state of the atmospheric gas: 

Substituting Eq.(4) into Eq.(3) and using definition of atmospheric scale height, Eq.(2), 
we have: 

p = pRT (4) 

mA = pH ( 5 )  

In the next Section we will see that the dimensional atmospheric quantities H and mA 
provide a description of the atmosphere that is sufficient for formulation of a non- 
dimensional approach to the analysis of atmospheric flight. As it will be seen in further 
Sections, this approach can be useful in performing sizing and parametric studies of 
trans-atmospheric vehicles. 

3. Non-dimensional velocity and non-dimensional mass ratio 

Obviously, velocity is an extremly important parameter for characterizing the 
performance of a flight vehicle. For vehicles that traverse the atmosphere, it is desirable 
to use a velocity unit that is directly related to the vertical extent of the atmosphere 
described by the scale height H. The most natural choice here is: 

Similarly to speed of sound, VH depends on atmospheric temperature. Substituting H 
from Eq.(2), we obtain an alternative expression: 

This expression can be directly compared with that for the speed of sound (see, e.g., [2]): 

v, =&F 

v, =&E (7) 
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C = JyRT 

where y = c,  I c,, is the ratio of specific heats (for air, y = 1.4). 

We will refer to VH as atmospheric scale velocity. The desired non-dimensional 
velocity quantity is 

(9) 
V v=- 

V” 
which, by analogy to the Mach number, will be referred to here as v -number 
(“upsilon”-number). It can be shown that the v - number provides a very simple relation 
between the dynamic pressure q and static (atmospheric) pressure p .  By definition of 
dynamic pressure we have: 

1 
q = - p v 2  

2 
Multiplying and dividing the right-hand term of Eq.(lO) by Hand substituting Eqs.(5) 
and (3) ,  we obtain: 

Thus, we simply have: 

It can be seen that this relation is more straightforward than the textbook relation between 
q and p involving Mach number and ratio of specific heats [see, e.g., [2]):  

q = p v 2  (12) 

q = 2 p A 4 2  Y 

To introduce the second non-dimensional parameter to be used in this non- 
dimensional approach, we apply the v - number introduced above to the simplest model 
of straight-and-level flight, where the aerodynamic lift force is balanced by the weight of 
the vehicle: 

(14) 
Here, A = ( L /  D )  is the lift-to-drag ratio of the vehicle, C, and S are its drag coefficient, 
and reference area respectively. Using relation between q and p ,  Eq.( 12) we rewrite 
Eq.( 14) in the form: 

L = q/zC,S = mg 

The right-hand term of Eq.( 15) is the ballistic coefficient of the vehicle. The ratio p/g in 
the left-hand term is the column mass of the atmosphere defined by Eqs.(3,5). Both of 
these quantities have a dimension of mass over area. Introducing the non-dimensional 
mass parameter, which we will call a ,D - ratio: 

we can rewrite Eq.( 15) in a non-dimensional form: 
&v2 = 1  
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In essence, the y - ratio reflects the importance of aerodynamic effects on the 
dynamics of the flight vehicle. Neither the atmospheric mass nor the ballistic coefficient 
are per se important, only their ratio is. On the other hand, for a given vehicle, the 
y - ratio is proportional to ambient atmospheric pressure and is, therefore, directly 
related to the pressure altitude. Thus, together, the v -number and y - ratio define two 
most important flight parameters: airspeed and altitude. 

The introduced non-dimensional quantities, v -number and y - ratio, are used below 
in simple analytic models of trans-atmospheric flight based on an assumption of an 
equilibrium between aerodynamic lift force and weight of the vehicle, which is partially 
balanced by the centrifugal force when velocities become comparable to the orbital 
velocity. As we shall see, this assumption leads to one-to-one correspondence between 
the airspeed of the vehicle and atmospheric density. We obtain and analyze this relation 
in the non-dimensional form. For trans-atmospheric non-powered glide, this concept is 
known since mid-20th century under the name “dynamic soaring” (hence the name of the 
abandoned “Dyna-Soar” Project - see, e.g., [3]). For lack of better name for this concept 
that combines both the equilibrium boost and equilibrium glide, we use the name “aero- 
surfing”. This reflects the notion that the vehicle merely surfs the atmosphere, all the 
time remaining only as deep in the atmosphere, as necessary to have adequate lift. 

4. Aero-surfing, an equilibrium hypersonic flight 

Starting from an equation analogous to Eq.( 14), except at velocities comparable to 
orbital velocity, the weight of the vehicle is partially compensated by the centrifugal 
force. We have: 

Here V, = m i s  the orbital velocity, where R is the radius of Earth. After substituting 
of the explicit expression for dynamic pressure q, Eq.( lo), and performing 
transformations similar to those preceding Eq.( 17), we obtain: 

where v, = V, lV, is the non-dimensional orbital velocity. In the explicit non- 
dimensional form, we have: 

Essentially, Eqs.(18,19) provide the way to compute the altitude from airspeed for the 
equilibrium flight. Inverting them with respect to the airspeed, we obtain 
correspondingly: 

2 -112 
v=(ap+v; ) (21) 

and 
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The last expression can be compared with the slightly modified textbook expression (121, 
p. 57 8) : 

1 

-I- 

This expression is analytically equivalent to Eq.(21) but its physical meaning is less 
straightforward. Similar expression can be found on p.302 of English translation of 
Sanger’s monograph [I]; however, direct comparison is complicated because, on the one 
hand, the author directly uses numerical values of relevant parameters, and on the other 
hand, he accounts for variation of gravity with altitude, which is neglected in Eq.(23) and 
is considered negligible for purposes of this study. 

The obtained relations between the airspeed and altitude of the equilibrium flight were 
based only on an assumption of balance between the aerodynamic lift and weight of the 
vehicle. The acceleration or deceleration along the flight path was not constrained so far. 
In the next Section, we consider the cases of powered boost and non-powered glide 
separately. We will consider the time histories of airspeed and travel distance, as well as 
the flight-path angle behavior. Altogether, these results will provide a two-dimensional 
(2D) description of the flight trajectory of a trans-atmospheric vehicle to and from space 
at hypersonic velocities. 

5. Aero-surfing: Hypersonic boost and hypersonic glide 

Under the equilibrium assumptions outlined above, the general 2D equations of 
motion of the flight vehicle can be reduced to a following non-dimensional form (see 
Appendix A): 

dv 2 -=-pv f n  
dz 

where 
F 

mg 
n=-- 

is the thrust-to-weight ratio of the vehicle (n  = 0 for the glide), and 
t r=-- 

V H  / g  

(24) 

(25) 
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is the suitable non-dimensional time variable. The first equation, Eq.(24), describes the 
acceleratioddeceleration of the vehicle along the flight path, while the second equation, 
Eq.(25), describes the balance of accelerations across the flight path. This equation is 
analytically identical to Eqs.( 18,20) and is therefore redundant. Using Eq.(19) we can 
eliminate p from Eq.(24) to obtain: 

d v  1 

Depending on the sign of the term h - 1 in square brackets in the right side of 
Eq.(28), it has either ordinary trigonometric, or hyperbolic trigonometric solution. For 
the boost case, we have h - 1 > 0. It can be easily verified that, barring an arbitrary 
constant term, the solution of the differential equation Eq.(28) is: 

In the dimensional form we have correspondingly: 

The time variables z and t here can be interpreted as describing the extrapolated time 
from take-off of the vehicle. 

For the glide case (n = 0) h - 1 c 0, and it can be easily verified that, barring an 
arbitrary constant term, the solution of differential equation Eq.(28) is: 

v(z) = v, tanh(- &] 
For sake of convenience, we replace the time variables z and t by extrapolated time till 
touchdown variables z' and t' . In non-dimensional notations we have: 

v(z')  = v, tanh( &] 
In the dimensional form we have correspondingly: 

V ( t ' )  = V, tanh ___ = gR tanh 
[a&] d- [A&J (33) 

The time histories of airspeed obtained for boost and glide can be integrated over time 
to get corresponding non-dimensional and dimensional extrapolated distances. For the 
extrapolated distance from take-off in the boost case we have: 

A(z) = -Av(? In cos [T T) 
(34) 
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For the extrapolated distance to touchdown in the glide case we have: 

To complete the 2D description of the flight trajectory of the TAV, we consider the 
flight-path angle. Under assumptions made above, it can be represented simply as a ratio 
of the vertical velocity to airspeed: 

1 dh e=-- 
V dt 

It can be shown (see Appendix B) that under aero-surfing conditions there is a one-to-one 
relation between the flight angle and the airspeed. For hypersonic boost, in non- 
dimensional notation we have: 

e=--u (39) 

For hypersonic glide (n = 0), from Eq.(39) directly follows an even more simple relation: 
1 -2 

A e=-v  
Corresponding non-dimensional relations in the explicit form are: 

for hypersonic boost and 

for hypersonic glide. 

It should be reminded that, as we have seen above, for aero-surfing in general 
a one-to-one relation between airspeed and altitude, or between v -number and 
y -ratio. [see Eqs.( 19,21)]. From this circumstance follows a one-to-one relation 
between flight path angle and altitude. For example, substituting Eq.(21) into Eq.(40) we 
obtain for hypersonic glide: 

or, in the explicit form: 
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These expressions become especially simple and straightforward for lower altitudes, 
where the airspeed is much smaller than the orbital velocity ( V << V,, ): 

or, in the explicit form: 
e=+ (45) 

For hypersonic boost, corresponding general expressions analogous to Eqs.(43,44) are 
more complicated, but for V << V, , they reduce to much more simple relations: 

B = ( h - l ) p  (47) 

This concludes presentation of the simple analytical model of atmospheric flight of a 
trans-atmospheric vehicle assuming aero-surfing conditions. In addition to the 
airspeed-altitude relation, which is valid for aero-surfing in general, we have obtained 
explicit expressions for time histories of airspeed and traveled distance for both 
hypersonic boost and hypersonic drag, as well as expressions for the flight-path angle. 

6. Discussion and conclusion 

In this paper, we attempted to directly factor in the vertical extent and mass of the 
atmosphere into aerodynamics of TAV. For this purpose, we have introduced two non- 
dimensional parameters, v - number and p - ratio. On one hand, these parameters are 
directly related to the altitude and airspeed of the vehicle. On other hand, they, as 
desired, encapsulate the atmospheric scale height and atmospheric column mass. Using 
these parameters together with two other non-dimensional parameters known from the 
literature: lift-to-drag ratio A and thrust-to-weight ratio n, we have analyzed the 
atmospheric flight of a TAV during boost to space and glide back to Earth. We have 
used the conventional assumption of equilibrium between aerodynamic lift, weight of the 
vehicle, and centrifugal force, which becomes increasingly important, at speeds close to 
orbital velocity. Using this non-dimensional approach, the classic results of Sanger [ 13 
were re-derived in a form that directly shows an interplay between the parameters of the 
atmosphere and parameters of the vehicle. 

As we have seen (Appendix A), this non-dimensional approach can be applied to initial 
2D equations of motion of the vehicle before any simplifications are made. Obviously, 
extension to 3D description of atmospheric flight is pretty straightforward. As in the 
conventional approach, the resulting equations can be numerically integrated without 
further simplifying assumptions. Therefore, this non-dimensional approach is applicable 
to a wide variety of problems regarding the atmospheric flight, especially where explicit 
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account for vertical span and mass per unit area of the atmosphere above the flight level 
is required. 

The simplified non-dimensional analytic model developed here illustrates the practical 
applications of the non-dimensional approach to aerodynamics of a flight vehicle. In the 
author’s opinion, it can be used for practical applications to the initial sizing of TAVs 
based on required performance throughout the most important, hypersonic phase of the 
flight. Non-dimensionalization of the initial equations of atmospheric flight reduces the 
space for trade studies to that of the above four non-dimensional parameters, which might 
be helpful in development of more sophisticated, numerical models of atmospheric flight 
of TAVs. 
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APPENDICES 

Appendix A. Non-dimensional equations of motion 

We start from 2D equations of motion in a standard form written for accelerations 
along and across the flight path (see, e.g., [2]): 

F 
g sin8 + - dV D 

dt m m 
- 

+ g c o s e  v2  L - = -- 
R m 

where 8 is the flight path angle ( 8  < 0 for the glide), F is the thrust, and the rest of 
notations are described in the main text. Using the explicit expressions for the lift and 
drag forces: 

L=-pV2(+ 1 
2 (A31 

044) 
1 
2 

D = -pV2C,S 

and introducing one more dimensional parameter associated with the atmospheric scale 
height, the atmospheric scale time 

we can non-dimensionalize Eqs.(Al ,A2). In the explicit non-dimensional form we have: 

Using non-dimensional notations, we have correspondingly: 
dv 2 -=-pv - s in8+n  
d z  

where 
t z=- 

tH 

F 

mg 

is the non-dimensional time, and 

n=-  

is the thrust-to-weight ratio of the vehicle. 

According to the assumptions justified in the main text, the angle 8 is small; hence 
sin 8 = 0 , and cos8 -- 1. Then, Eqs.(A8,A9) can be rewritten in the form: 
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d v  2 -=-pV + n  
d z  

2 

Appendix B. Flight- path angle 

According to our assumptions, this angle is small for typical hypersonic boost and 
glide trajectories and we can represent it as a ratio of the vertical velocity to airspeed: 

1 dh e=-- 
V dt 

dh 1 dh d v  
dt t ,  d v  d z  

The factor d v l d z  is directly obtained from the equation of motion, Eq.(A12). The 
factor dh / d v can be evaluated using Eq.( 15). From the definition of the p - ratio, 
Eq.( 16), we have: 

For the vertical velocity we have: 
- 

dP dP - dh 
P P H  

-- -_ - 

Thus, 
dh H d p  
d v  p d v  
- - - 

Evaluating d p l d v  from Eq.( 19) we have 
dh 2H -3 

d v  Ap 
- v  

Substituting Eqs.(BS,A12) into Eq.(B2) and using again Eq.( 15) we have: 
- 

Substituting Eq.(B6) into Eq.(B 1), we obtain an initial expression for the flight path 
angle: 

Obtaining pv2  from Eq.( 19): 
1 p v 2  = - (1 - v;2v2) a 

and substituting this result into Eq.(B7), we obtain: 
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We see that at hypersonic velocities, when v2 >> 1,  the flight-path angle 8 is small 
indeed, provided the ratio vl  v, does not approach unity. 

It should be noted that the obtained result, Eq.(B9) is not applicable at low airspeeds, 
where v + 0,  and 8 becomes unrealistically large. The reason for this is due to 
omission of the term containing sin 8 in the equation of motion Eq.(A8) and its 
derivative Eq.(A12). Indeed, if we keep this term in Eq.(A8), then Eq.(A12) is modified 
to the form: 

(A12a) d u  2 - = - p u  - 8 + n  
d z  

Then, substituting Eqs.(BS,Al2a) into Eq.(B2) and using Eq.( 15) we have: - 
v -3 2H v - ~ ( ~ u ~  - 8 + n ) =  - A v  (-pu2 - 6 + n )  dh 

dt 2~ apa & 
Substituting Eq.(B6a) into Eq.(Bl), and solving the resulting equation for 8 we obtain: 

8 = q u 2  a +lr("l)  W2 

Substituting pu2 from Eq.(B8) into Eq.(B7a), we obtain the desired modification of 
Eq.(B9), which converges to Eq.(B9) at higher v -numbers: 

0=++1j-1[ a 1-(ulu")2 -1) 

As a matter of fact, this derivation can be repeated without assuming that sin 0 = 8 . 
Then Eq.(Bl) is replaced by 

1 dh sin 8 = -- 
V dt 

and the derivation above can be simply rewritten with 8 replaced by sin 8. Then we 
obtain: 

For the glide case, at low airspeeds ( v2 <<1) Eq.(B9b) converges to a well-known 
textbook result: 

1 s in8 = -- a 
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